

Whitepaper

Version: 1.1
Date: 28th October 2019

© PONTON GmbH

PONTON GmbH
Dorotheenstraße 64
22301 Hamburg, GERMANY
Email: wrmhl@ponton.de
http://www.ponton.de

WRMHL

 WRMHL Whitepaper

June 2019 Page 2 of 29

Table of Contents

1. Why WRMHL? .. 3

1.1. Why use blockchain for B2B integration? ... 4
1.2. Unique value proposition of WRMHL .. 4
1.3. Case studies ... 5

2. WRMHL overview... 7

3. WRMHL architecture ..10

3.1. Terminology and overview ...10
3.2. Transaction/ message processing with WRMHL ..12
3.3. Non deterministic message routing and proposer sequence16
3.4. Extending WRMHL with business/ application-specific logic17

4. WRMHL features ...19

4.1. APIs for developing distributed applications ...19
4.2. Authentication and certificate management ...20
4.3. Role-based access ..20
4.4. Fast data access – caching ...21
4.5. Encryption, data Privacy and anonymisation ...21
4.6. Monitoring and reliability ..22
4.7. Tools ...23

4.7.1. Block Viewer ..23
4.7.2. User ID and Password Hash Generator ...24
4.7.3. Message Exporter ..24

5. WRMHL blockchain deployment variants ...25

5.1. WRMHL deployment with only Validator Nodes ...26
5.2. WRMHL deployment with Validator Nodes and Non-Validator Nodes27

6. Contact ..29

7. References ..29

 WRMHL Whitepaper

June 2019 Page 3 of 29

1. Why WRMHL?

WRMHL (“Wormhole”) is an enterprise-ready, low-latency blockchain framework for industry
consortia or communities. WRMHL is inspired by using a wormhole to slip into the future of
blockchain technology, skipping the Gartner’s Hype Cycle1 trough of disillusionment.

Why WRMHL?

Figure 1: WRMHL gives us a lift to the future of using blockchain for B2B integration

Throughout all industry sectors you find thousands of business-to-business processes where
participating organisations require an affordable high-speed tool for the synchronisation of
data and process statuses across organisational boundaries. PONTON has developed the
WRMHL framework based on user requirements from industry participants in order to
provide a high-quality software layer which meets these requirements.

Data consistency across a larger number of organisations is one of the main features of
blockchain technology. As with Bitcoin, Ethereum, or other, faster blockchain technologies,
WRMHL assures a consistent data state across all nodes and all participants connected to
these nodes. However, in contrast to other blockchain technologies, WRMHL goes beyond
the basics by providing additional features such as:

- Fast data synchronisation within less than a second,
- Flexible adaptation to use case requirements,
- Application development in Java or other industry-grade languages,
- State-of-the art maintainability of on-chain logic (process/ application specific

extensions),
- Modularised and extensible architecture design,
- Multitude of deployment scenario’s which can be easily be adopted,
- Ability to store arbitrary data e.g. representing digital records or assets.

These features are presented in the following sections of this Whitepaper. However, before
starting with WRMHL, we would like to present a few typical industry processes and analyse
when implementing them on blockchain technology makes sense, and when not. PONTON’s
expertise is based on 18 years of experience in B2B integration which has strongly
influenced the WRMHL architecture and process design.

1 https://en.wikipedia.org/wiki/Hype_cycle

2016

2018

2019

2022

 WRMHL Whitepaper

June 2019 Page 4 of 29

1.1. Why use blockchain for B2B integration?

Often, designers of B2B integration infrastructures have blockchain in mind – but in reality,
blockchain is only in certain cases a true alternative to the “classical ways of integration” via
central platforms or bilateral data exchange (see also [Merz19]). In most cases, one of the
classical solutions will serve as a sufficient and efficient way to coordinate distributed
processes:

- think of exchanges, Uber, AirBnB, Sabre, and similar platforms as centralised
solutions or

- think of bilateral data exchange between businesses as practised alongside supply
chains of all different sectors for decades.

Blockchain comes into play if a central platform appears as too expensive or not trustworthy
and bilateral data exchange does not fit the business process requirements: high-cost and
low trust are the drivers leading towards blockchain based solutions. But this alone is not
sufficient. The process itself needs to fit the blockchain pattern: in the best case, it requires
data to be shared among all participants.

Think of a Bitcoin transaction: the transaction is written into a block which is visible to all
participants and beyond. Even non-users of Bitcoin may inspect the transaction using a
block explorer. On the contrary, if transaction data is always encrypted only for one single
receiver, we will fall back to the bilateral data communication pattern. There, we find enough
messaging protocols that allow for end-to-end security and non-repudiation of submission
and reception. With efficiency and scaling not being a primary focus of blockchain
technology, it might be not a suitable solution for scenarios with large volumes of
transactions. Also, don’t consider a blockchain solution if the business value of the
transaction is extremely low or as a carrier of, e.g., IoT transactions. In the latter case,
participants will end up with gazillions of megabytes of redundant data that need to be
managed decentrally and that cannot be processed efficiently by (big data) applications.

All-in-all, using blockchain in B2B consortia makes sense in particular if:

- most of the data communication follows the broadcast pattern of 1:N communication,
- most of the transaction data is transparently shared with other participants,
- transactions carry a certain minimal value and occur at a moderate rate,
- process participants perceive a centralised solution as less efficient, too costly, or the

central operator as not trustworthy,
- highest level of availability, ordering and immutability of the messages are important.

1.2. Unique value proposition of WRMHL

The unique value proposition of WRMHL can be summarised as follows: WRMHL makes it
easy for users to build end-to-end business application utilising blockchain technology.
WRMHL is very well suited to support decentralised processes and secure 1:N
communication. It is scalable as well as fast and provides resilience and security at low cost,
while there is no single point of failure. It allows clients to bring their use case to market
much faster and at a fraction of the cost compared to developing without a blockchain
framework. Since WRHML is not limited to specific features of the carrier blockchain,
WRMHL is process independent and supports all kinds of different use cases for various

 WRMHL Whitepaper

June 2019 Page 5 of 29

industries. Therefore, there are also no process limitations for the business application
developed on WRMHL. In comparison to public blockchains no transaction fees apply and
members have full control over governance.

1.3. Case studies

Why did PONTON develop WRMHL? When PONTON analysed a range of typical processes
that seemed suitable for a blockchain solution and understood the exact requirements,
PONTON realised the need for a flexible blockchain infrastructure for B2B processes and
tailored WRMHL around those requirements. Below are three case studies for use cases
that are particularly well suited for WRMHL:

Use case 1: Car registry

The administration of vehicle ownership involves multiple administrative processes across
many stakeholders from various sectors. Many of those processes are still paper based and
data is not shared between shareholders. This poses a risk of information manipulation, data
duplication, synchronization issues, prolonging the processes more than necessary and is
prone to error.

A WRMHL based blockchain solution allows each stakeholder to add their data as an
immutable record to a common log while having access to data entered by other
stakeholders. Below are process examples of various stakeholders in the ecosystem:

- Manufacturer: e.g. registration of new car, warranties, spare parts
- Car owner: change in personal data, transfer of ownership
- Registration authority: e.g. Issue and transfer of car registration certificate I and II
- Insurance: e.g. proof third-party liability insurance cover, claims procedure
- Banks: e.g. car certificate as loan or lease collateral
- Garages: e.g. service history, damages reports
- General inspectors (TÜV): Issue and renewal of road-worthiness certificate
- Authorities: e.g. payment of road tax
- Other private persons: e.g. private car hire
- Police: Flag vehicle as stolen

Bringing those processes to a WRMHL based business application enables a decentralised
system which provides trust and enables cross sector collaboration of the entire ecosystem
of stakeholders, promising improved data integrity and reduced risk of fraud.

A WRMHL based vehicle registry system would also make the entire process more efficient
as well as cost effective and convenient. PONTON did develop a prototype based on
WRMHL for vehicle data management over the blockchain as part of the technical
documentation.

Use Case 2: Land registries

Land registries keep records about the ownership of property. Any record amendment refers
to the change of ownership or the change of ownership details. E.g., a sales contract or the
registration / deregistration of a mortgage represent such record amendment. Land registries
(at least in some countries) are operated by local courts in a federated form. There is no

 WRMHL Whitepaper

June 2019 Page 6 of 29

central “master registry”. I.e., introducing a master registry would contradict the federated
structure and would introduce additional cost.

Any record amendment takes place by one of the federated registries and needs to be
replicated to the other registries (among others, for backup reasons). It is further required to
keep data in sync across the participants. Process participants need to be managed, i.e.,
registered and authenticated. Access is exclusively available to registered participants, while
no external player shall be able to decipher the exchanged data, be able to attack the overall
system or manipulate any data or code.

By using blockchain, this is avoided by the redundant distribution of data across nodes and
by using encryption and authentication for every data link between nodes as well as between
nodes and the software applications on top of them.

Use Case 3: Distributed trading

All kinds of products are traded using centralised marketplaces. However, there are cases
for certain products or industries where no trust in the platform operator is given or where the
third-party cost is viewed as too high.

While blockchain technology in principle allows to decentralise the execution of trades, a
blockchain based application must fulfil the same requirements which apply to centralised
marketplaces: transactions need to be processed at near-real-time, participants need to act
anonymously and, at the same time, orders and trade data needs to be shared with all
participants without delays. In addition, a blockchain solution makes only sense when the
block time is required to be as close to zero as possible. Many other requirements, not listed
here, need to be met as well.

With Enerchain2 a WRMHL based communication infrastructure for trading wholesale energy
products such as power and gas, PONTON has achieved to meet all requirements. Using
the PoA (Proof-of-Authority) of Tendermint3, consensus can be reached in just 200ms within
a group of Validator Nodes distributed across the Internet. Participants of Enerchain are
authenticated and identified as consortium members by the blockchain infrastructure and the
overall system is secure with regards to tamper resistance, data leakage and cyberattacks.
Also, historic market data in the blockchain was made available for later analysis enabling
market participants to synchronise with the “data truth” if their respective trade data gets out
of sync. Furthermore, WRMHL provides anonymity when it is needed, allowing for data
encryption which makes it impossible to identify participants by their trading pattern after
some time.

PONTON is currently developing various further distributed trading solutions4 based on
WRMHL together with industry partners.

Further down it is explained how the architecture and features of WRMHL address the
requirements of blockchain use cases.

2 More information on Enerchain can be found here: www.enerchain.ponton.de
3 See www.tendermint.com/
4 E.g. www.etiblogg.com

 WRMHL Whitepaper

June 2019 Page 7 of 29

2. WRMHL overview

WRMHL is a blockchain based software framework that is used for the development of
distributed applications. Primary WRMHL users are software developers working for industry
consortia or system integrators. Indirect users are members of B2B consortia or
communities who intend to simplify data exchange within their group.

WRMHL is a use-case independent framework that can be tailored to a given target
business application solution design. WRMHL leaves a range of design decisions to the
application layer so that developers are flexible in their decision which function should be
used from the WRMHL framework and which to implement as part of the business
application.

WRMHL builds upon experience with several distributed blockchain applications that
PONTON has developed over the past years and that require an efficient and robust
technical foundation.

WRMHL features:

- Message-driven: WRMHL data communication is message driven, i.e., participants
send and receive messages.

- Message API: The WRMHL Message API is generic in the sense that any message
exchange is tunnelled through the same interface. This simplifies application
development so that existing applications can easily be re-used for the next project.
The API documentation is available to software developers.

- Programming API: The WRMHL Programming API simplifies application
development. The API documentation is available to software developers.

- Extremely short block time: For projects like Enerchain, PONTON uses WRMHL
with a block time of just one second. This was measured using 10 validator nodes in
a multi-cloud environment. The block time could also be configured for any longer
duration if the application allows.

- Extremely low end-to-end latency: A message that is sent by an application
through all WRMHL components, with several cryptographic steps will reach the
other participants on average in less than one second. If blocks are formed at a rate
of one second, the worst-case latency is here one second for the block time plus the
consensus time, which is around 200ms, depending on the number of validators. The
best case is just the consensus delay if a transaction is processed right before the
formation of a block. On average, latency is thus around 800ms.

- Security: All network communication between the components of the WRMHL
architecture is encrypted and authenticated. Application developers may add further
cryptographic functions as it may be required by the business process. They are not
restricted by WRMHL and may apply any type of end-to-end private / public key
usage, group keys, ring signatures, etc.

- Easy to maintain: WRMHL is not using smart contracts. Instead, process/
application specific extensions are deployed on the blockchain and on the user side.
As WRMHL is developed in Java, and can be extended in JAVA, it has all the
benefits of an established software development language.

- Clients (Client Applications) instead of Wallets: Wallets, which are used by other
blockchain technologies, are limited to certain use cases in particular for

 WRMHL Whitepaper

June 2019 Page 8 of 29

cryptocurrencies. In contrast WRHML does not enforce any wallet paradigm and
uses Clients/ Client Applications as an endpoint to access the blockchain, which
allows for arbitrary business logic based on the WRMHL messaging concept.

- Built-in exchange of certificates: Public key certificates are required to
authenticate participants and to grant access to the blockchain infrastructure. The
blockchain itself is used to transfer and store certificates. I.e., the process of
certificate publication itself suits very well to the blockchain. With WRMHL,
application developers can easily design a separate PKI layer (public key
infrastructure).

- Support true end-to-end encryption: Nodes may be hosted by other participants.
I.e., any data sent through the blockchain and stored there may be accessible by
those participants who operate a node. If end-to-end encryption is used, even these
node operators are not able to access any data that has been encrypted.

- User roles: Application designers may require separate user roles with different
access rights.

- Ready for multi-cloud environments: WRMHL was tested across several cloud
infrastructures. It is important to avoid cloud vendor lock-in, so it was a design goal of
WRMHL to allow participants to use the cloud environment of their choice.

- Various operating options: Thanks to the modularisation of WRMHL, components
can be operated in different ways: Either the whole stack (blockchain plus
application) may run on premise at each of a participant or the Blockchain Nodes
may be operated by a third party (other participant or service provider) or all
components may be outsourced. This way, WRMHL adapts to the individual
preferences of each participant or the consortia.

- Standard deployment mechanism: WRMHL can be deployed by participants using
standard technologies such as Ansible or Vagrant for example (find further details in
the WRMHL documentation).

- Based on Tendermint consensus mechanism: Tendermint is a well-known
implementation of the highly efficient PBFT (Practically Byzantine Fault-Tolerant)
consensus mechanism, allowing for a high number of transactions per second with a
low end-to-end latency.

- Blockchain abstraction layer: The interfaces between components of the different
WRMHL layers abstract away from Tendermint-specific functions. This supports the
migration to a different consensus mechanism if this should be more applicable to the
business process requirements in the future.

- Application library: WRMHL allows business process specific extensions, e.g., for
distributed trading. In case of a larger number of processes sharing the same logic,
frameworks such as WRMHL reduce work and can easily be adopted by application
developers.

- Industry-proof: WRMHL was developed based on the same software quality
requirements that also apply for 24/7 conventional technology applications that
PONTON is developing for over 18 years. All parts of the WRMHL software are
tested for quality, performance, and against vulnerabilities / abuse patterns. In
addition, WRMHL has been tested by a large number of industrial users in projects
like Enerchain and NEW 4.05.

5 www.new4-0.de, English flyer: http://www.new4-0.de/?wpdmdl=816

 WRMHL Whitepaper

June 2019 Page 9 of 29

- Excellent support: PONTON is an expert in B2B integration since the year 2001.
PONTON has developed central platforms, and has standardised and implemented
bilateral data exchange infrastructures. PONTON has developed and distributed
blockchain-based applications since 2016 and supports users and solution partners.
As (a) maintainer PONTON takes care of improving and further developing WRMHL.

- Cost reduction: Blockchain technology helps to avoid intermediaries, so that just the
infrastructure cost remains, which only consists of the hosting cost plus maintenance
and support of the Blockchain Nodes. Usually this cost is a fraction of the process co-
ordination cost compared to a central platform.

WRMHL is a development framework for distributed software applications. I.e.,

- WRMHL is not a cryptocurrency. Even tokens are not required within WRMHL.
- WRMHL does not use smart contracts. However, the process/ application specific

extensions can be integrated in the blockchain consensus and provide the same
functionality of a smart contract.

- With WRMHL, software development for process/ application specific extensions is a
lot easier and not so limited regarding freedom of implementation compared to smart
contracts:

o No constraints on data or logic complexity: There is no limitation for the
complexity of the data structure or for the integration of further software
applications (databases, back-end systems), if the application logic requires
it.

o No transaction fee: Decentralised applications are designed to the benefit of
all participants. I.e., there is no need to pay for the execution of smart contract
transactions.

o Simplified software updates: In case it is required to update functions and
modules, the WRMHL blockchain allows (creates) the possibility of taking a
node offline and replacing the application logic or the node itself. After the
node which was disconnected from the network has joined the remaining
nodes again, missed blocks and transactions are re-loaded.

 WRMHL Whitepaper

June 2019 Page 10 of 29

3. WRMHL architecture

3.1. Terminology and overview
- Blockchain Node: the core blockchain logic as it is used from a blockchain vendor

or developer such as Tendermint.
- Client Adapter: horizontal logic that accesses a Node Adapter and that resides

within a participant.
- Client Adapter Extension: extension/ addon of the Client Adapter to implement

application-specific logic.
- Client/ Client Application: application software using the WRMHL framework. In the

case of distributed trading, Clients/ Client Applications are, e.g., the trading GUI front-
end, automated trading logic (“algos”), or systems for post-deal processing.

- Node Adapter: a horizontal layer which is application agnostic and adds functions to
the node. The Node Adapter is collocated with the Blockchain Node.

- Node Adapter Extension: extension/ addon of the Node Adapter to implement
application-specific logic.

- Non-Validator Node: A Blockchain Node participating in the Tendermint consensus
mechanism.

- Validator Node: A Blockchain Node not participating in the Tendermint consensus
mechanism.

The WRMHL architecture is a B2B integration framework that allows business communities
to set up a common layer for data communication and data coordination between
participants.

As a middleware for decentralised processes, WRMHL foresees the following layers
between the Blockchain Nodes and the Client/ Client Applications:

- The Node Adapter is co-located with each Blockchain Node. It is assumed that Node
Adapters reside in a location that is public within the sphere of the consortium, i.e., all
participants need to have access to any Node Adapter. For this reason, no private
secrets of individual participants shall be disclosed in the sphere of a Node Adapter. If
there is a need for sharing secrets, this can be implemented at the level of the Client
Adapter or the Client. Typical Node Adapter functions are:

o delegate messages for validation to the Node Adapter Extensions,
o send and receive transactions and blocks to and from the node,
o authenticate Client Adapters,
o cache blockchain content,
o manage application-specific Node Adapter Extensions,
o reconnect and re-sync with a node in case of a fault,
o mutually sense a heartbeat signal between the Blockchain Node and

connected components (real-time health check) which can be used to switch
in case of failures.

 WRMHL Whitepaper

June 2019 Page 11 of 29

Figure 2: The WRMHL software stack.

- The Client Adapter resides within the participant, which is considered a private secure
zone. I.e., keys, local private data and proprietary algorithms can be managed by the
Client Adapter. Typical Client Adapter functions are:

o holds the private key for authenticated communication with a node adapter,
o switches over to an alternate Node Adapter in case of a disconnection
o reconnects and re-synchs with the new Node Adapter. This takes place

transiently within seconds for users of the Client Adapter.
o provides ability to add application-specific logic,
o provides an API that is used by Clients/ Client Applications in order to send

and receive messages based on a WebSocket interface.

 WRMHL Whitepaper

June 2019 Page 12 of 29

3.2. Transaction/ message processing with WRMHL

Instead of the smart contract programming model, the WRMHL Message API of the Client
Adapter is used to send and receive messages. This is especially suitable for the model of
1:N communication/ B2B Integration scenarios because the application programmer’s
pattern is using the blockchain as a message driven communication/ transaction medium.

In the following it is described how messages/ transactions are processed with WRMHL.
Starting point is the end-to-end processing of a message with the standard behaviour “push
to all”.

Figure 3: Full cycle of processing a WRMHL message

Step 1: The Client/ Client Application sends a message through the Client Adapter Message
API to the Client Adapter. The API standard used for this is WebSocket6. It allows to process
messages in both directions and in parallel, from the Client to the Client Adapter and vice
versa.

Step 2: The Client Adapter receives a message through the Client Adapter Message API.
Depending on the message type of the message and implemented application specific Client
Adapter Extensions, application-level processing is performed on the messages (e.g.
validation, transformation, encryption and/ or filtering).

Step 3: If the processing in “Step 2” is successfully finished, the message is forwarded to the
Node Adapter. To do so, the Client Adapter must have established an authenticated and
encrypted connection to the Node Adapter. This is only possible by using a private key on
the Client Adapter side, which has a related public key, certified by a certificate authority.
The Node Adapter verifies if the Client Adapter is certified (as the Client Adapters’

6 see IETF RFC 6455, https://tools.ietf.org/html/rfc6455

Blockchain Node

Node Adapter

Tendermint

Headless
Client

Web(UI)
Client

Client Adapter

Blockchain Node

Node Adapter

Tendermint

Blockchain Node

Node Adapter

Tendermint
Blockchain Node

Node Adapter

Tendermint

Client sends
message

Consensus with validator nodes:
Message/ transaction written to a block

Headless
Client

Web(UI)
Client

Client Adapter
Headless

Client
Web(UI)

Client

Client Adapter

All clients receives in
blockchain written
transaction/ message

1

3

5
6

7

9
9

9
7

7
6

6

2

4

8

8

8

 WRMHL Whitepaper

June 2019 Page 13 of 29

certificates reside with all Node Adapters). Afterwards, messages are exchanged between
the Node Adapter and this specific Client Adapter.

Step 4: The Node Adapter itself offers a Message API to a number of Client Adapters. The
message is now received from the Client Adapter. Depending on the message type of the
message and implemented application specific Node Adapter Extensions, application-level
processing is performed on the messages. If this processing is successfully finished, the
Node Adapter forwards the message to the node (Tendermint node).

Step 5: At the blockchain level, the message represents a Tendermint transaction (short:
Tx). Any communication between Nodes and Node Adapters takes place through
Tendermint’s ABCI interface7. From a node’s perspective, transactions just contain bits and
bytes.

1. The Node Adapter pushes messages (Tx candidates) to the Tendermint node.
2. Before they are added to the local mempool of the node, a validation takes place by

invoking CheckTx() at the Node Adapter. Here the validation of the transaction takes
place. Each Tx is hashed by the Node (160bit, RipeMD) to achieve a UUID (Universally
Unique Identifier).

3. In case of a positive validation, the Tx is added to the mempool
4. and sent to the neighbouring nodes. For data exchange between nodes the Gossip

protocol8 is used, which ensures that the Tx reaches all nodes after some time.
5. Each node therefore performs a local validation by calling CheckTx() at the Node

Adapter and
6. In the successful case the node collects a copy of all transactions in its local mempool.

Figure 4: Distributing a message through the blockchain

7. One out of the validating nodes (the so-called proposer) takes all messages (which fit
within the configured max Tendermint block size) out of the mempool, groups them into
a block, which is ordered on a “first in, first out” basis, creates a block hash and signs it.

7 http://tendermint.readthedocs.io/projects/tools/en/master/
8 https://en.wikipedia.org/wiki/Gossip_protocol

NA-1
Node
Adapter

Node

NA-2 NA-3
1

abci abci abci

Tx

Tx

Validation

2

3
4

Validation

5
Validation

5

Tx

6

Tx

6Tx
Tx

Tx

Tx
Tx

Tx
Tx

Tx

Tx
Tx

Tx
Tx

Tx

Tx
Tx

OK? OK! OK? OK! OK? OK!

 WRMHL Whitepaper

June 2019 Page 14 of 29

Figure 5: The proposer initiates a consensus round

The consensus round starts with the proposer node sending a propose message to which
remaining nodes respond with a pre-vote message:

8. The proposer broadcasts Tx hashes of the proposed block and each validator node
responds to all other validators with a pre-vote block message.

9. Based on the received pre-votes each validator calculates if the majority of pre-votes is
> 2/3 and sends a pre-commit to the other validators.

10. Finally, if validators have received a pre-commit from > 2/3 of the remaining validators,
the state switches to commit-block.

Figure 6: Consensus round

NA-1
Node
Adapter

Node

NA-2 NA-3

abci abci abci

7
Tx
Tx

Tx

Tx
Tx

Pr
op

os
er

New Block
H(Tx)
H(Tx)
H(Tx)

Tx

NA-1
Node
Adapter

Node

NA-2 NA-3

abci abci abci

Pr
op

os
er

propose propose

precommit
Precommit

8 8

CommitCommit

9
9

10 10

New Block
H(Tx)
H(Tx)
H(Tx)

New Block
H(Tx)
H(Tx)
H(Tx)

New Block
H(Tx)
H(Tx)
H(Tx)

 WRMHL Whitepaper

June 2019 Page 15 of 29

11. Finally, the block is submitted to the application (NA) through the ABCI API, by
subsequently invoking BeginBlock(), N * DeliverTx(), EndBlock(), Commit().

Figure 7: Propagating blocks to Node Adapters

Step 6: The Node Adapter receives the transactions (= WRMHL messages) of the new
created block. Depending on the message type of the message and implemented application
specific Node Adapter Extensions, application-level processing is performed on the
messages.

Step 7: The messages of the new block are forwarded by the Node Adapter to each Client
Adapter that is connected to a Node Adapter.

Step 8: The Client Adapter receives the messages. Depending on the message type of the
messages and implemented application specific Client Adapter Extensions, application-level
processing is performed on the messages.

Step 9: If the default behaviour isn’t changed by application specific Client Adapter
Extensions, the message is sent to all connected Clients/Client Applications.

 WRMHL Whitepaper

June 2019 Page 16 of 29

3.3. Non deterministic message routing and proposer
sequence

The Tendermint gossip protocol mentioned above ensures that the distribution of messages
through the blockchain network is different every time a new message is send, so that it
cannot be predicted which validator node will receive the next message.

Figure 8: Non deterministic message routing

For example, when participant A sends a message from his Client Adapter to his Non-
Validator Node, his node decides to which Validator Node he sends the message first, based
on the list of Validators he has. It could be V-1 or any of the other Validators (V-2 to V-4).
Afterwards he sends the same message again, but this time he sends it to V-2, in the
meantime V-1 sent the message to V-4. This continues till all nodes have received the
message. Due to the fact that the distribution after the first connection is random, the
message routing will be different each time a new message is sent.

The Tendermint protocol also selects a proposer node in a non-deterministic way. The
proposer node is a Validator Node which initiates a consensus round and creates a new
block, if the consensus round was successful. When a Tendermint node is the current
proposer, this node proposes its mempool as the new block. The proposer selects a fixed
order of transactions for the block.

Because the message routing and the proposer node sequence are non-deterministic, it is
impossible to say which Validator Node will receive which message first and which Validator
Node is the next proposer. Therefore, if two participants try respond to a message at the
same time (e.g. execute an order at the same time), no one can forecast which transaction
will be accepted and which one will be rejected. Therefore, no network participant can
maintain any advantage with regards to message distribution and containment of these
messages in new blocks.

 WRMHL Whitepaper

June 2019 Page 17 of 29

3.4. Extending WRMHL with business/ application-specific
logic

On both layers, Client Adapter and Node Adapter, WRMHL allows to add business-specific
logic, e.g., to process messages through these components in the context of the required
business logic. When an empty WRMHL skeleton is deployed, it doesn’t know about the
message types and message content as this is application-specific. If, e.g., a message
contains a data item which represents a date, the business-specific logic extension validates
if the value is valid and has the right format. If the application requires, e.g., that the date is a
future date, it is again the extension which has to assure that the value is within the expected
range. Such logic can only be implemented by application-level developers.

Applications like Enerchain (wholesale trading) or Gridchain9 (electricity grid operation
processes) add such process-specific logic. Each of these applications use the plain
WRMHL framework and verticalize it for the specific business logic of the respective
application.

Figure 9: Adding process-specific logic within WRMHL

Below, some functions are discussed in detail. However, the WRMHL development has not
yet been completed with these functions. During the course of future projects, the framework
will be gradually expanded. At the same time, it is also a goal to keep the complexity of the
system as low as possible. More information about future developments can be found on
PONTON’s WRMHL website: https://wrmhl.ponton.de.

9 Further information about Gridchain: https://ponton.de/focus/blockchain/gridchain/

 WRMHL Whitepaper

June 2019 Page 18 of 29

The blockchain abstraction layer

The blockchain world is still in motion. While Tendermint today is considered “state of the
art” technology another improved technology might be offered as a standard “carrier
blockchain” in a few years.

The WRMHL framework abstracts away from technology details. It’s decoupled from
individual blockchain technology/ implementation. Thus, the blockchain abstraction
represents the lower section of the Node Adapter in the WRMHL architecture.

Figure 10: Abstraction of technological particularities through the blockchain abstraction
layer

 WRMHL Whitepaper

June 2019 Page 19 of 29

4. WRMHL features

4.1. APIs for developing distributed applications

Applications based on WRMHL must be able to exchange “their” data in such a manner that
applications of other participants receive this data whenever they participate in the process.
This means, Clients/ Client Applications connected to different Client Adapters are sending
and are receiving messages. Clients/ Client Applications connect to a Client Adapter using
the Client Adapter Message API of the Client Adapter. The Client Adapter Message API
uses the WebSocket transport layer. Messages are represented via JSON data following the
envelop-payload pattern. The generic structure shows the following JSON example:

"{
„msgId“: „a4b65d13-f92c-4b44-828a-cdffe5ae8719“,
„type“: „exampleBO“,
„payload“: {

boContent1: “content1”,
boContent2: “content2”,
...

},
 }"

Developing a distributed application based on
WRMHL means that the application specific logic
is implemented as a Client Adapter Extension and
Node Adapter Extension using the Client Adapter
programming API and the Node Adapter
programming API. Message types representing
business objects or transaction data have to be
defined. The required specific application logic can
be implemented using the Message Processing
Chain of the Client Adapter and Node Adapter.

The specific application logic can be for example:
- validation of messages (formal and functional

validation, based on customisable set of
validation rules). In case of an invalid
message, an “invalid massage” response can
be sent back to the Client.

- message transformation: the content of
messages can be changed.

- compression of messages: messages can be compressed by the Client Adapter.
- encryption/ Anonymisation: a part of the content of a message can be encrypted to hide

a part of the message data. The encryption can be also implemented in a way that the
originator of the message is anonymous (no pseudonym as in Bitcoin). With this strong
anonymisation a GDPR (General Data Protection Regulation) compliant implementation
is possible.

- other special processing logic can be activated by the Message Processing Chain, e.g.
filtering of messages (not every Client/Client Application needs every message) or a
new message is created by the Client Adapter based on receiving a message.

Figure 11: Message Processing Chain

CA

Blockchain Node

Tendermint

Client App

NA

Backend

MPC

MPC
Extensions/ addons

Extensions/ addons

 WRMHL Whitepaper

June 2019 Page 20 of 29

4.2. Authentication and certificate management

Authentication

WRMHL provides an authentication process which ensures that only eligible participants get
access to the blockchain. Each organisation participating in the permissioned blockchain
network must provide certain information (e.g. ID and full legal name of the participating
organisation). This ensures that only companies which are approved by a trusted certificate
authority are able to connect with the blockchain network. The authentication process is
done transparently for the application level, i.e. the application programmer does not have to
handle any authentication issues.

Certificate issuance

A signed certificate is required for the authentication between Client Adapter and Node
Adapter. When applying for access to the permissioned blockchain network, participating
organisations create a cryptographic key pair and a certification request. Subsequently they
send the certification request to a certificate authority with the request to sign it. In response
to the applicant’s certification request, the certification authority creates a public key
certificate for the particular organisation.

Certificate distribution

WRMHL supports the distribution of the valid signed certificates (including the public keys) of
the participants of the blockchain network. As soon as a new participant connects the first
time with his Client Adapter to a Blockchain Node, the valid signed certificate of the new
participant is distributed through the blockchain network. This means that every Node
Adapter and Client Adapter stores the new valid signed certificate. As a result, every Client
Adapter knows every valid permissioned participant of the blockchain network. The
certificate distribution process also allows to update certificates which have been distributed
over the blockchain network and the revocation of certificates (under development).

4.3. Role-based access

WRMHL provides a role-based access for connecting Clients/ Client Applications to the
Client Adapter of the blockchain network. The ID of the user or of the Client/ Client
Application connecting to a Client Adapter needs to have a user role assigned. A user role
groups a set of permissions for sending and receiving message types. When a user
authenticates against the Client Adapter and sends a message, the role-based access
feature in the Client Adapter identifies the message type, checks the role of the user and if
the user has the permission to send or receive a message of this message type. If the
authorisation is successful the Client Adapter processes the message, if the authorisation
fails, the Client Adapter responds with an authorisation violation message. A Client Adapter
only sends a message to a connected Client/ Client Application if the permission of receiving
this message type is defined in the user role. The use role definitions are configurable and
stored by the Client Adapter. The implemented solution enables WRMHL participants to
simply create new roles as well as grouping permissions, allowing for a finer authorization.

 WRMHL Whitepaper

June 2019 Page 21 of 29

4.4. Fast data access – caching

The blockchain is not a database and it neither provides
for fast access to content stored in the blockchain nor
offers a query interface which can be used to select, filter,
sort or combine content. The blockchain is simply the
virtual location where the “truth” has been stored and this
location today consists essentially of no more than a
chain of blocks filled with data.

However, it is necessary for applications to efficiently
access content. Typically, the most recent transaction
data needs to be processed. WRMHL provides a
transaction cache where messages of one or several
message types can be cached. The transaction caching
can be used on Client Adapter level and/ or on Node
Adapter level. As the access paths and the business
objects or transaction types are application-specific, the
transaction cache must be individually set up in the
application specific context.

4.5. Encryption, data Privacy and anonymisation

WRMHL supports the partial encryption of the payload of a message. The encryption takes
place in the Client Adapter based on the public / private key pair stored in the Client Adapter.
The private key is bound to the participant (see also “Authentication and certificate
management”). As a consequence, the participant has to ensure, that the access to Client
Adapters is restricted.
WRMHL supports also encryption methods which can anonymise the creator of a message.
The method supports also GDPR compliance. For example, if the identifier of the participant
needs to be anonymously stored in a message, the Client Adapter can encrypt the identifier
of the participant in a way, that with every new message the encrypted result of the identifier
(= the bytes representing the encrypted identifier) is different every time. As a consequence,
the participant can’t be identified by the encrypted identifier. The method is secure against
statistical analytical attacks, if the number of participants is high enough. Of course, it’s
possible to disclose the encrypted identifier to only one other participant. The process of the
disclosure can be limited in a way, that the receiver of the message can disclose the
identifier of the sender only after an additional related anonymous message form the
receiver to sender.

Figure 12: WRMHL transaction cache

 WRMHL Whitepaper

June 2019 Page 22 of 29

4.6. Monitoring and reliability

WRMHL provides several features ensuring a reliable operation of the complete blockchain
network.

System Health Check

System Health Check messages inform Client Adapters and Client/ Client Applications
periodically about the health status of the system. If a component is not available or does not
respond in a certain configurable time interval, the health status turns to "bad". In case a
Client Adapter receives such a “bad” status, the Client Adapter tries to connect to a different
Blockchain Node (see below “automated node switching”). Client Applications receiving a
“bad” health status can connect to a different Client Adapter of the participant.

Automated node switching

If the abovementioned health check reports a "bad" status to a Client Adapter, the Client
Adapter switches to another Node Adapter (meaning Blockchain Node) of the blockchain
network. To enable the node switching, other Blockchain Node(s) appropriate for connecting
have to be configured in the Client
Adapter.
Beyond a “bad” status of a
Blockchain Node, a switch to
another Blockchain Node may also
be necessary if the previous one is
no longer reachable. A new
connection is automatically
established to an alternate
Blockchain Node out of the pool of
configured nodes if the Client
Adapter identifies a connection loss.
In this case, the replay process
mentioned below starts with this new
node.
The advantage of the automated node switch lies in the independence of the individual node
availability. The blockchain remains highly available as an overall system – not just each
individual node. The configurable maximum disconnection time of connections from a Client
Adapter to Node Adapter (node) is usually 10-15 seconds. It can even be reduced to only a
few seconds. In most cases, a Client/ Client Application does not even notice that the node
switch took place.

Replay

The replay mechanism provides missed messages from the past to a Client Adapter or to a
Client/ Client Application. When a Client/ Client Application connects to a Client Adapter, the
Client/ Client Application can request messages from the past, with a block ID as starting
point or a "full" replay. A “full” replay means every message which the Client Adapter holds
in its replay cache (the cache size is configurable). The same mechanism is in place
between Client Adapter and Node Adapter. If a Client Adapter connects to a Node Adapter,
the Client Adapter can also request messages from the past. The replay mechanism from
Node Adapter to Client Adapter is also used by the automated node switch to ensure that

Figure 13: Transparency regarding node failures

NA /
Node

Client Adapter

- Assess loss of conection
- Request connection to alternate node
- Re-load transactions from alternate node

NA /
Node

NA /
Node

Application

 WRMHL Whitepaper

June 2019 Page 23 of 29

the Client Adapter, which switched to a different Blockchain Node, receives the missed
messages.
The replay mechanism is purely technical and was embedded in the WRMHL framework so
that, from an application’s perspective, one only needs to wait for a few seconds for the
arrival of lost messages and to support the reliable operation of the whole blockchain
network.

4.7. Tools

PONTON has developed several stand-alone tools which makes the deployment, the
administration and the operation of a WRMHL based blockchain network more convenient.

4.7.1. Block Viewer

The Block Viewer enables users to view the content located in the entire blockchain which
has been created through business messages. Business messages representing business
transactions and certificates of the blockchain network participants are located in the
blockchain and therefore visible to the Block Viewer. Messages stored in the blockchain are
in JSON format and syntactically rendered in a canonically visual form by the Block Viewer.
The Block Viewer connects directly to a Blockchain Node. As a consequence, the Block
Viewer is not able to decrypt any encrypted parts of the stored messages.

Figure 14: Block Viewer

 WRMHL Whitepaper

June 2019 Page 24 of 29

4.7.2. User ID and Password Hash Generator

The User ID and Password Hash Generator Tool supports participants in creation of users
and password-hashes. The authentication of Clients/ Client Applications to a Client Adapter
requires a user ID and a password. The Client Adapter holds the user ID in plain writing and
the password as hash in a user store, in order to verify credentials of the user when logging-
in to the Client/Client Application. The tool is published as extra HTML-file or included in a
Client Adapter installation.

Figure 15: User ID and Password Hash Generator

4.7.3. Message Exporter

The Message Exporter enables the blockchain network participant to receive in real time all
messages which were send from his own organisation as well as other organisations and
stores these messages in designated file(s), allowing the participant to further process the
messages. The Message Exporter connects to a configured Client Adapter of a given
participant and receives messages from the Client Adapter and persists them on a
filesystem. The participant can configure, which messages will be stored. All entries are
stored in plain JSON and correspond to the message type definitions.

 WRMHL Whitepaper

June 2019 Page 25 of 29

5. WRMHL blockchain deployment variants

As explained above WRMHL, which is based on Tendermint, distinguishes between
Validator Nodes (part of the consensus mechanism) and Non-Validator Nodes (not part of
the consensus mechanism). WRMHL provides different flexible ways to deploy a blockchain
network including a minimum set of Validator Nodes and optional Non-Validator Nodes. The
question how the deployment should look like is initially less a technical question but rather
an organisational and governance question, depending on the organisational and
governance frame of the consortia/ group / community using and operating the blockchain.
Driving aspects for example are:

- Does an organisation/ legal entity formed by consortia/ group / community exist?
- How many members does the consortia/ group / community have?
- How many participants want to operate a Blockchain Node? (Technically there is no

need that every member runs a Blockchain Node)?
- Do some members have a special interest in running Validator Nodes?
- Is a minimal end-to-end transaction time important?

WRMHL supports consortia blockchains with a certain number of Validator Nodes. Typical
numbers are 4, 7, 10, 13, etc. This is due to the fact that, whenever a consensus is
performed, there is one node playing the role of the proposer node and the remaining nodes
vote with a 2/3 majority. I.e., the remaining number of Validator Nodes should be divisible by
3, if each Validator Node is configured with the same voting power and the Validator Nodes
are configured as a full meshed network.

At the same time, it should be taken into consideration that the number of Validator Nodes
should not be too many with a too high communication latency between each other: if 13
nodes are distributed across different internet locations, all Validating Nodes will potentially
exchange messages with all the other Validator Nodes, leading to quite high data traffic.

The best case for low communication latency would be 4 Validator Nodes closely co-
located– but here the likelihood of a failure is higher if they all reside in the same local
network. So, to achieve a good balance between performance and availability, ideally 7 or
10 nodes should be distributed across 3-4 physical locations (e.g. cloud environments). It is
key that the hosted nodes are connected through data channels with low latency and
enough communication bandwidth.

Apart from Validator Nodes, participants may also use Non-Validator Nodes. They do not
take part in the consensus, but are notified with the finally agreed block at the same time as
the Validator Nodes.

Independent from the deployment scenario, the participant or service provider who is
operating a Validator Node has to fulfil some service levels, otherwise consensus efficiency
may be negatively affected. As mentioned before, a maximum of 1/3 of all Validator Nodes in
a network can be not available/ down to avoid interrupting the operation of the entire
blockchain network.

In the following sections different potential blockchain deployment variants are defined.

 WRMHL Whitepaper

June 2019 Page 26 of 29

5.1. WRMHL deployment with only Validator Nodes

If there is no need to operate a high number of Blockchain Nodes and/ or the end-to-end
transaction time between two participants is not critical, the blockchain network can be
operated only with Validator Nodes.

Figure 16: WRMHL Deployment with only Validator Nodes

One Client Adapter can handle many connected Clients/ Client Applications. Many Client
Adapters from different participants connect to a Validator Node.

The Client Adapter should be operated by the participant or a trusted service provider of the
participant as the Client Adapter stores private data of the participant (private key for
encryption, user IDs and user roles).

As mentioned above, the operation of the validator nodes is more an organisational and
governance question. The Validator Nodes could be operated by participants or by a service
provider on behalf of the consortia.

 WRMHL Whitepaper

June 2019 Page 27 of 29

5.2. WRMHL deployment with Validator Nodes and Non-
Validator Nodes

As explained before the operation of a high number of Validator Nodes decreases the end-
to-end transaction time between participants. If there is a need to operate a high number of
Blockchain Nodes, the blockchain should be based on Validator Nodes and Non-Validator
Nodes. With a mixture of Validator Nodes and Non-Validator Nodes there are two base
scenarios on how to organise the nodes.

Scenario 1 –
Validator Nodes and Non-Validator Nodes are organised without hierarchy

The deployment defines no hierarchy between Validator Nodes and Non-Validator Nodes
because from an underlying governance model of a consortia it is irrelevant if a participant
connects to a Validator Node or to a Non-Validator Node. Some participants operate
Validator Nodes and other participants operate Non-Validator Nodes.

Figure 17: Deployment without Blockchain Node hierarchy

In this deployment scenario the option exists, that a participant operates no node and
connects with his Client Adapter to a node of another participant or a service provider.

 WRMHL Whitepaper

June 2019 Page 28 of 29

Scenario 2 –
Validator Nodes and Non-Validator Nodes are hierarchal organised

If it would be an advantage for a participant to operate a Validator Node instead of operating
a Non-Validator Node so it is a valid scenario to organise Validator Nodes and Non-Validator
Nodes in a hierarchy and allow Client Adapters to connect only to a Non-Validator Node.

Figure 18: Deployment with hierarchal structuring of the Blockchain Nodes

In this deployment scenario the Client Adapters of every participant can only connect to Non-
Validator Nodes. The Non-Validator Nodes are normally connected to a Validator Node, but
could also connect to another Non-Validator Node. Participants can operate their “own” Non-
Validator Nodes, a group of participants can share the operation of a Non-Validator Node or
a participant can connect with his Client Adapter to a Non-Validator Node operated by
another participant. The set of Validator Nodes should be operated by a trusted service
provider in behalf of the consortia.

 WRMHL Whitepaper

June 2019 Page 29 of 29

6. Contact

Are you interested in using WRMHL for your B2B integration process?

 Please contact PONTON at wrmhl@ponton.de.

You can also join a webinar with PONTON and discuss how WRMHL can support your use
case.

7. References

[Merz19] Michael Merz: Blockchain im B2B-Einsatz (German), MM Publishing, 2019.
 English translation to appear in 2019.

